A Dual Version of Reimer's Inequality and a Proof of Rudich's Conjecture
نویسندگان
چکیده
We prove a dual version of the celebrated inequality of D. Reimer (a.k.a. the van den Berg-Kesten conjecture). We use the dual inequality to prove a combinatorial conjecture of S. Rudich motivated by questions in cryptographic complexity. One consequence of Rudich’s Conjecture is that there is an oracle relative to which one-way functions exist but one-way permutations do not. The dual inequality has another combinatorial consequence which allows R. Impagliazzo and S. Rudich to prove that if P = NP then NP ∩ coNP ⊆ i.o.AvgP relative to a random oracle.
منابع مشابه
Reimer's Inequality on a Finite Distributive Lattice
We generalize Reimer’s Inequality [6] (a.k.a the BKR Inequality or the van den Berg–Kesten Conjecture [1]) to the setting of finite distributive lattices. (MSC 60C05)
متن کاملA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملPartial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000